Close Collapse all sections
Process Data set: Chem-Org\Propylen-DE-2000 (en) de

Key Data Set Information
Location DE
Reference year 2000
Name
Chem-Org\Propylen-DE-2000
Classification
Class name : Hierarchy level
  • NACE 1.1: Herstellung von chemischen Erzeugnissen / Herstellung von chemischen Grundstoffen
General comment on data set Kurzinfo: Datensatz aus GEMIS. Negative Werte durch Gutschriftenrechnung. GEMIS steht für “Globales Emissions-Modell Integrierter Systeme“; es ist ein Softwaretool des Öko-Instituts. GEMIS wurde 1987 erstmals angewendet und wird seitdem weiterentwickelt. Die GEMIS-Datensätze beruhen - je nach Anwendung - auf unterschiedlichen Methoden; auch der zeitliche und der örtliche Bezug der Datensätze sind verschieden. Methode bei Prozessen mit mehreren Outputs: Zur Modellierung der Datensätze zu Multi-Output Prozessen wird in GEMIS die Methode der Systemerweiterung verwendet. Hierbei werden Datensätze, in denen jeweils alle Inputs, alle Outputs und alle Umweltaspekte eines Multi-Output Prozesses ausgewiesen sind, als “Brutto“ bezeichnet. Durch Subtraktion von ‚Bonus’-Prozessen, die jeweils einen der Outputs auf herkömmliche Weise bereitstellen, entsteht ein Nettoprozess, in denen das substituierte Nebenprodukt als Gutschrift erscheint. Die Gutschrift ist dabei kein realer Output des Prozesses, sondern ein rechnerischer ‚Merker’. Beispiel: Multi-Output Prozess Biogas-BZ-MC-HKW-D-2020/brutto: Output ist 1 TJ Elektrizität und 0,6 TJ Wärme, der “Netto“-Datensatz soll sich aber nur auf die Elektrizität beziehen. Durch Subtraktion des Bonusprozesses Wärme-Bonus-Gas-Hzg-D-2020 mit dem Output Wärme(0,6 TJ) entsteht der “Netto“-Datensatz Biogas-BZ-MC-HKW-D-2020/Gas, für den als Output 1 TJ Elektrizität und 0,6 TJ ‚Gutschrift Wärme-Bonus-für-KWK (Bio)-2020 bei Wärme-Bonus-Gas-Hzg-D-2020’ angegeben werden; die Gutschrift stellt keinen Stoff- oder Energiefluss des Prozesses dar, sie ist allein rechnerisch begründet. Transport: Angaben zu den angesetzten Transportdistanzen werden nicht gegeben. Abschneidekriterien: Wasser wird in der Regel nur auf der Inputseite angegeben (etwa als Kühlwasser), auch wenn es den Prozess wieder verlässt als Abwasser. Weitere Angaben zu angewendeten Abschneidekriterien werden nicht gegeben. Besondere Nomenklatur: Zahlreiche Abkürzungen für Brennstoffe aus Biomasse und entsprechende Technologien. Besonderheiten auf Datensatzebene: Die Datensätze sind mit Vorketten-Datensätzen verknüpft, in denen die jeweils benötigten Vorprodukte, Energien und Transportleistungen erzeugt werden. Die Daten zu den Umweltaspekten werden erstens “direkt“ (d.h., nur aus dem jeweiligen Prozess, falls dieser direkt zu Umweltaspekten beiträgt) als auch “mit Vorkette“ (d.h., einschließlich aller vorausgehenden Prozesse) ausgewiesen. Negative Werte für Stoffflüsse kommen in GEMIS regelmäßig vor; sie entstehen durch die Anwendung von Systemerweiterung um Multi-Output Prozesse in Single Output Prozesse umzurechnen. Teilweise werden Aufwendungen für Produktionsmittel (Anlagen, Fahrzeuge etc.) aufgeführt (als Stoffflüsse im Input); diese sind jedoch nicht auf die funktionelle Einheit bezogen, sondern werden als absolute Werte angegeben; sie werden nur als Input und nicht als Output (Entsorgung der Betriebsmittel) angegeben. Die durch die Herstellung dieser Produktionsmittel verursachten Umweltaspekte sind dagegen über Leistung, jährliche Auslastung und Lebensdauer auf die funktionelle Einheit bezogen Weiterführende Hinweise und Literatur: #1: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.2, Handbuch, Darmstadt, August 2004. #2: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.1, Handbuch, Darmstadt, Darmstadt, Januar 2003. #3: Fritsche, U., et al.: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Verbundprojekt gefördert vom BMU im Rahmen des ZIP, Projektträger: FZ Jülich, Mai 2004, Anhangband zum Endbericht. #4: Fritsche, U., et al.: Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell integrierter Systeme (GEMIS) Version 2.1 - erweiterter und aktualisierter Endbericht, U. Fritsche u.a., i.A. des Hessischen Ministeriums für Umwelt, Energie und Bundesangelegenheiten (HMUEB), veröffentlicht durch HMUEB, Wiesbaden 1995
Copyright Yes
Owner of data set
Data set LCA report, background info
Quantitative reference
Reference flow(s)
Functional Unit 1 kg Propylen
Technological representativeness
Technology description including background system Herstellung von Propylen (= Propen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Propylen entstehen Ethylen, Butadien, Benzol und andere Kohlenwasserstoffe) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reindarstellung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Die weltweite Produktion an Propylen für chemische Verwendungszwecke (Produktion für thermische Nutzung wird nicht berücksichtigt) betrug 1990 ca. 30 Mio. t. Die Verteilung der Produktionsmenge auf einzelne Regionen kann der Tabelle 1 entnommen werden. Der Anteil (in Gew.-%) des Steamcracking-Verfahrens an der jeweiligen Produktion ist in der rechten Spalte der Tabelle aufgelistet (Ullmann 1993a). In dieser Prozeßeinheit wird nur die Propylensynthese nach dem Steamcracking-Verfahren bilanziert. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa wird überwiegend (80 %) von Naphtha ausgegangen (Ullmann 1987). Tabelle 1 Produktionsmengen für Propylen und Anteil des Steamcracking-Verfahrens, 1990. Region Produktion [1000 t] Steamcracker [%] Nordamerika 10003 56 Südamerika 1466 68 Westeuropa 9142 78 Osteuropa 2706 87 Japan 4214 82 Asien-Pazifik 2399 88 Sonstige 390 Summe 30320 Bei der hier betrachteten Propylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Da Propylen gleichzeitig mit Ethylen beim Steamcracking entsteht, erfolgt die Bilanzierung dieser Prozeßeinheit auf der Grundlage der Werte der Ethylenherstellung (vgl. Prozeßeinheit „Chem-Org\Ethylen“). Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 2 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 2, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 2, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4-Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 2). Neben dem Heizgas (siehe oben) bleiben auch die Reststoffe bei der Allokation unberücksichtigt. Die Reststoffe werden ohne Gutschrift/Belastung z.B. zur Raffinerie abgegeben, da ihr weiterer Verwendungszweck unbekannt ist. In #1 wird der beim Cracken anfallende 3 bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Eine Gutschrift für 3 bar-Dampf bei einer derart komplexen Verflechtung der Dampfnutzung, wie sie in der chemischen Industrie vorliegt, ist fragwürdig. Einerseits ist die genaue Weiterverwendung des Dampfes unbekannt. Andererseits ist die tatsächliche Energieeinsparung durch die Weiterverwendung des Dampfes wesentlich geringer als der Heizwert es vorgibt . Im Unterschied zu der Dampfgutschrift von 10,37 GJ/t Ethylen nach #1 werden in #2 die Einsparungsmöglichkeiten auch nur mit ca. 2 GJ beziffert. Dieser Wert von 2 GJ liegt aber ohnehin innerhalb der Schwankungsbreite des Energiebedarfs bei der Propylenherstellung nach den verschiedenen hier betrachteten Literaturquellen (siehe „Energiebedarf“ weiter unten). Aufgrund der obigen Überlegungen wird daher bei GEMIS keine Gutschrift für den anfallenden 3 bar-Dampf erteilt. Da die verschiedenen Produkte (Ethylen, Propylen, 60 % C4 und Benzol) gleichwertig sind und bei der Bilanzierung die Allokation nach Massen erfolgt, ergeben sich bei der Nachfrage von 1 t Produkt immer dieselben Werte für Energie, Emissionen etc. unabhängig davon welches der Produkte nachgefragt wird. Tabelle 2 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Propylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Propylen [kg] Edukt Naphtha 1000 Edukt Naphtha 5533,3 1482,2 Produkte Produkt Ethylen 300 Ethylen 2000 Propylen 150 Propylen 1000 1000 60 % C4-Frakt. 60 60 % C4 400 Benzol 50 Benzol 333,3 Reststoffe 268 Reststoffe 1786,7 478,6 Heizgas 170 Verluste 2 Verluste 13,3 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 2 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 2) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Propylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 150 kg auf 1000 kg Propylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (26,8 %) ergebenden Anteile für die Propylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Propylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t, Wert wurde von der Ethylenherstellung übernommen). Da bei GEMIS keine Energiegutschrift für den Dampf erteilt wird (siehe Allokationsregeln), ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Propylen (26,8 % der Energie des Gesamtcrackingprozesses). In #3 wird der Energiebedarf zur Herstellung von Propylen (Input Naphtha) mit 5,417 btu/lb (Anteil für Propylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Propylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Propylen angegeben. (Der Wert wurde von der Ethylenherstellung übernommen. Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2GJ/t Ethylen bzw. Propylen möglich). Die Energieangaben der beschriebenen Literaturquellen zeigen eine befriedigende Übereinstimmung. Für GEMIS werden wie auch bei der Massenbilanz die Daten aus #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US-EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - ergibt sich für Benzol ein Emissionswert von 0,151 kg/t Propylen. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Propylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Propylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Propylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
LCIA Method Data set Mean amount Unit Kommentar
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
kg CO2-Äq.
0.0
kg SO2-Äq.

Inputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 1.26 kg1.26 kg
Linked process dataset:
Product flow Systems / Other systems 24.3 MJ24.3 MJ
Linked process dataset:
Product flow Systems / Other systems 63.2 MJ63.2 MJ
Linked process dataset:

Outputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 1.0 kg1.0 kg
Waste flow
End-of-life treatment / Other end-of-life services 0.0028 kg0.0028 kg
General comment Nicht eindeutig mappbarer Fluß – kontextabhängige Verwendung ist zwingend zu überprüfen: