Close Collapse all sections
Process Data set: Steine-Erden\CaO-GGR-Ofen-DE-2050 (en) de

Key Data Set Information
Location DE
Reference year 2050
Name
Steine-Erden\CaO-GGR-Ofen-DE-2050
Classification
Class name : Hierarchy level
  • NACE 1.1: Herstellung von Glas und Glaswaren, Keramik, Verarbeitung von Steinen und Erden / Herstellung von Zement, Kalk und gebranntem Gips / Herstellung von gebranntem Gips
General comment on data set Kurzinfo: Datensatz aus GEMIS. Negative Werte durch Gutschriftenrechnung. GEMIS steht für “Globales Emissions-Modell Integrierter Systeme“; es ist ein Softwaretool des Öko-Instituts. GEMIS wurde 1987 erstmals angewendet und wird seitdem weiterentwickelt. Die GEMIS-Datensätze beruhen - je nach Anwendung - auf unterschiedlichen Methoden; auch der zeitliche und der örtliche Bezug der Datensätze sind verschieden. Methode bei Prozessen mit mehreren Outputs: Zur Modellierung der Datensätze zu Multi-Output Prozessen wird in GEMIS die Methode der Systemerweiterung verwendet. Hierbei werden Datensätze, in denen jeweils alle Inputs, alle Outputs und alle Umweltaspekte eines Multi-Output Prozesses ausgewiesen sind, als “Brutto“ bezeichnet. Durch Subtraktion von ‚Bonus’-Prozessen, die jeweils einen der Outputs auf herkömmliche Weise bereitstellen, entsteht ein Nettoprozess, in denen das substituierte Nebenprodukt als Gutschrift erscheint. Die Gutschrift ist dabei kein realer Output des Prozesses, sondern ein rechnerischer ‚Merker’. Beispiel: Multi-Output Prozess Biogas-BZ-MC-HKW-D-2020/brutto: Output ist 1 TJ Elektrizität und 0,6 TJ Wärme, der “Netto“-Datensatz soll sich aber nur auf die Elektrizität beziehen. Durch Subtraktion des Bonusprozesses Wärme-Bonus-Gas-Hzg-D-2020 mit dem Output Wärme(0,6 TJ) entsteht der “Netto“-Datensatz Biogas-BZ-MC-HKW-D-2020/Gas, für den als Output 1 TJ Elektrizität und 0,6 TJ ‚Gutschrift Wärme-Bonus-für-KWK (Bio)-2020 bei Wärme-Bonus-Gas-Hzg-D-2020’ angegeben werden; die Gutschrift stellt keinen Stoff- oder Energiefluss des Prozesses dar, sie ist allein rechnerisch begründet. Transport: Angaben zu den angesetzten Transportdistanzen werden nicht gegeben. Abschneidekriterien: Wasser wird in der Regel nur auf der Inputseite angegeben (etwa als Kühlwasser), auch wenn es den Prozess wieder verlässt als Abwasser. Weitere Angaben zu angewendeten Abschneidekriterien werden nicht gegeben. Besondere Nomenklatur: Zahlreiche Abkürzungen für Brennstoffe aus Biomasse und entsprechende Technologien. Besonderheiten auf Datensatzebene: Die Datensätze sind mit Vorketten-Datensätzen verknüpft, in denen die jeweils benötigten Vorprodukte, Energien und Transportleistungen erzeugt werden. Die Daten zu den Umweltaspekten werden erstens “direkt“ (d.h., nur aus dem jeweiligen Prozess, falls dieser direkt zu Umweltaspekten beiträgt) als auch “mit Vorkette“ (d.h., einschließlich aller vorausgehenden Prozesse) ausgewiesen. Negative Werte für Stoffflüsse kommen in GEMIS regelmäßig vor; sie entstehen durch die Anwendung von Systemerweiterung um Multi-Output Prozesse in Single Output Prozesse umzurechnen. Teilweise werden Aufwendungen für Produktionsmittel (Anlagen, Fahrzeuge etc.) aufgeführt (als Stoffflüsse im Input); diese sind jedoch nicht auf die funktionelle Einheit bezogen, sondern werden als absolute Werte angegeben; sie werden nur als Input und nicht als Output (Entsorgung der Betriebsmittel) angegeben. Die durch die Herstellung dieser Produktionsmittel verursachten Umweltaspekte sind dagegen über Leistung, jährliche Auslastung und Lebensdauer auf die funktionelle Einheit bezogen Weiterführende Hinweise und Literatur: #1: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.2, Handbuch, Darmstadt, August 2004. #2: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.1, Handbuch, Darmstadt, Darmstadt, Januar 2003. #3: Fritsche, U., et al.: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Verbundprojekt gefördert vom BMU im Rahmen des ZIP, Projektträger: FZ Jülich, Mai 2004, Anhangband zum Endbericht. #4: Fritsche, U., et al.: Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell integrierter Systeme (GEMIS) Version 2.1 - erweiterter und aktualisierter Endbericht, U. Fritsche u.a., i.A. des Hessischen Ministeriums für Umwelt, Energie und Bundesangelegenheiten (HMUEB), veröffentlicht durch HMUEB, Wiesbaden 1995
Copyright Yes
Owner of data set
Data set LCA report, background info
Quantitative reference
Reference flow(s)
Functional Unit 1 kg Branntkalk (CaO)
Technological representativeness
Technology description including background system Brennen von Kalk (Schachtöfen); unter dem Prozess des Kalkbrennens versteht man die Zersetzungsreaktion des Kalksteins durch die Zufuhr thermischer Energie: CaCO3 -> CaO + CO2. In der Technik wird die Dissoziation bei 900-1100°C durchgeführt. Das Brennen des Kalks kann in verschiedenen Öfen erfolgen. Dabei gibt es vier Haupttypen, deren Anteile nach einer Umfrage des Bundesverbandes der deutschen Kalkindustrie folgendermaßen anzunehmen sind: Tab.: Ungefährer Anteil einzelner Ofentypen zur Branntkalkherstellung (nach #2). Ofentyp Mengenanteil in % Schachtofen 30 Ringschachtofen 30 Gleichstrom-Gegenstrom-Regenerativofen (GGR-Ofen) 25 Drehrohrofen 15 Prozess-Situierung Die in dieser Bilanz genutzten Daten beziehen sich auf den Brennprozess in einem Gleichstrom-Gegenstrom-Regenerativ-Ofen (GGR-Ofen) einer Modifikation des Schachtofens (nach #1). Er wird als moderner Vertreter für alle Schachtofentypen (85 % Mengenanteil) bilanziert. Die Schachtofentypen unterscheiden sich im Energiebedarf zur Herstellung einer Tonne Branntkalks. Dabei liegt der Energiebedarf für die verschiedenen Schachtofentypen ca. zwischen 3500 und 4100 MJ/t Branntkalk (Ullmann 1990). Die hauptsächlich in der vorliegenden Untersuchung verwendeten Daten (#1 + #3) beziehen sich auf Deutschland um 1992. Massenbilanz: Pro Tonne stückigen Branntkalks müssen nach #1 rund 1755 kg Ofenstein in den Brennprozess eingebracht werden. Weitere Hilfs- oder Betriebsstoffe werden nicht bilanziert. Der hohe Massenverlust kommt dadurch zustande, daß gemäß der oberen Reaktionsgleichung ein Teil des Kalksteins als CO2 den Prozeß über den Gaspfad verläßt (s.o.). Energiebedarf: Für das Brennen einer Tonne Kalks im bilanzierten GGR-Ofen werden nach #1 rund 3645 MJ/t benötigt. Als Brennstoff wird Erdgas verwendet. Neben dem Brennstoffbedarf besteht nach #1 für den Betrieb des Ofens noch ein Strombedarf von ca. 80 MJ/t Branntkalk. Prozessbedingte Luftemissionen: Als prozessbedingte Luftemissionen sind im Prozess des Kalkbrennens die CO2-Emissionen zu bilanzieren, die bei der sog. Entsäuerung des Kalks auftreten. Die Ofensteinmasse enthält 767 kg gebundenes Kohlendioxid von denen während des Brennprozesses 755 kg/t Branntkalk freigesetzt werden (#1). Die Differenz verbleibt gebunden im Branntkalk. Der Wert aus #1 stimmt exakt mit dem Wert überein, den #3 als materialbedingte Prozessemissionen angibt. #3 gibt weiterhin einen Wert für Staub an, den es mit 0,17 kg/t Branntkalk quantifiziert. Auch dieser Wert wird in GEMIS bernommen. Die brennstoffbedingten Prozessemissionen lassen sich nicht einfach über eine Verbrennungsrechnung zur Bereitstellung einer bestimmten Prozesswärme berechnen. Vielmehr sind die spezifischen Bedingungen der Verbrennung bei der Branntkalkherstellung zu berücksichtigen. #3 gibt für verschiedene Brennstoffe Emissionskennziffern an. Diese sind für Erdgas in der folgenden Tabelle wiedergegeben: Tab.: Brennstoffbedingte Prozessemissionen bei der Branntkalkherstellung in erdgasbefeuerten Schachtöfen (nach #3). Schadstoff Emissionen in kg/TJ Emissionen in kg/t Branntkalk CO2 56000 204,12 CO 6000 21,87 CH4 2,5 0,009 NMVOC 2,5 0,009 NOx 62 0,226 N2O 1,5 0,005 SO2 0,1 0,001 Staub 0 0 Die SO2-Emissionen sind auch deshalb so gering, da ein Teil des Schwefeldioxids aus dem Brennstoff in den kälteren Zonen des Kalzinierungsraumes im Branntkalk gebunden wird. Gerade in den Schachtöfen wird dadurch der größte Teil des Schwefels zurückgehalten. Einige Anwendungen, wie die Stahlherstellung erfordern jedoch einen geringen Schwefelgehalts des Kalks. Diese können in Drehrohröfen erreicht werden, da hier die Kalzinierungszone anders beschaffen ist (Ullmann 1990). Die gesamten Emissionsfaktoren ergeben sich durch Addition der materialbedingten und brenstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme: Direkt im Prozess des Kalkbrennens wird kein Wasser in Anspruch genommen. Abwasserinhaltsstoffe: In Prozess wird kein belastetes Abwasser bilanziert. Reststoffe: Es fallen keine Reststoffe an, die nicht wieder innerhalb der Systemgrenzen verwertet werden können. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 57% Produkt: Baustoffe
LCIA Method Data set Mean amount Unit Kommentar
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.755
kg CO2-Äq.
0.0
kg SO2-Äq.

Inputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 3.6500000000000004 MJ3.6500000000000004 MJ
Linked process dataset:
Product flow Systems / Other systems 1.76 kg1.76 kg
Linked process dataset:
Product flow Systems / Other systems 0.08 MJ0.08 MJ
Linked process dataset:

Outputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 1.0 kg1.0 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 1.7E-4 kg1.7E-4 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 0.755 kg0.755 kg