Close Collapse all sections
Process Data set: Metall\Fe-roh-DE-2050 (en) de

Key Data Set Information
Location DE
Reference year 2050
Name
Metall\Fe-roh-DE-2050
Classification
Class name : Hierarchy level
  • NACE 1.1: Metallerzeugung und -bearbeitung / Erzeugung von Roheisen, Stahl und Ferrolegierungen
General comment on data set Kurzinfo: Datensatz aus GEMIS. Negative Werte durch Gutschriftenrechnung. GEMIS steht für “Globales Emissions-Modell Integrierter Systeme“; es ist ein Softwaretool des Öko-Instituts. GEMIS wurde 1987 erstmals angewendet und wird seitdem weiterentwickelt. Die GEMIS-Datensätze beruhen - je nach Anwendung - auf unterschiedlichen Methoden; auch der zeitliche und der örtliche Bezug der Datensätze sind verschieden. Methode bei Prozessen mit mehreren Outputs: Zur Modellierung der Datensätze zu Multi-Output Prozessen wird in GEMIS die Methode der Systemerweiterung verwendet. Hierbei werden Datensätze, in denen jeweils alle Inputs, alle Outputs und alle Umweltaspekte eines Multi-Output Prozesses ausgewiesen sind, als “Brutto“ bezeichnet. Durch Subtraktion von ‚Bonus’-Prozessen, die jeweils einen der Outputs auf herkömmliche Weise bereitstellen, entsteht ein Nettoprozess, in denen das substituierte Nebenprodukt als Gutschrift erscheint. Die Gutschrift ist dabei kein realer Output des Prozesses, sondern ein rechnerischer ‚Merker’. Beispiel: Multi-Output Prozess Biogas-BZ-MC-HKW-D-2020/brutto: Output ist 1 TJ Elektrizität und 0,6 TJ Wärme, der “Netto“-Datensatz soll sich aber nur auf die Elektrizität beziehen. Durch Subtraktion des Bonusprozesses Wärme-Bonus-Gas-Hzg-D-2020 mit dem Output Wärme(0,6 TJ) entsteht der “Netto“-Datensatz Biogas-BZ-MC-HKW-D-2020/Gas, für den als Output 1 TJ Elektrizität und 0,6 TJ ‚Gutschrift Wärme-Bonus-für-KWK (Bio)-2020 bei Wärme-Bonus-Gas-Hzg-D-2020’ angegeben werden; die Gutschrift stellt keinen Stoff- oder Energiefluss des Prozesses dar, sie ist allein rechnerisch begründet. Transport: Angaben zu den angesetzten Transportdistanzen werden nicht gegeben. Abschneidekriterien: Wasser wird in der Regel nur auf der Inputseite angegeben (etwa als Kühlwasser), auch wenn es den Prozess wieder verlässt als Abwasser. Weitere Angaben zu angewendeten Abschneidekriterien werden nicht gegeben. Besondere Nomenklatur: Zahlreiche Abkürzungen für Brennstoffe aus Biomasse und entsprechende Technologien. Besonderheiten auf Datensatzebene: Die Datensätze sind mit Vorketten-Datensätzen verknüpft, in denen die jeweils benötigten Vorprodukte, Energien und Transportleistungen erzeugt werden. Die Daten zu den Umweltaspekten werden erstens “direkt“ (d.h., nur aus dem jeweiligen Prozess, falls dieser direkt zu Umweltaspekten beiträgt) als auch “mit Vorkette“ (d.h., einschließlich aller vorausgehenden Prozesse) ausgewiesen. Negative Werte für Stoffflüsse kommen in GEMIS regelmäßig vor; sie entstehen durch die Anwendung von Systemerweiterung um Multi-Output Prozesse in Single Output Prozesse umzurechnen. Teilweise werden Aufwendungen für Produktionsmittel (Anlagen, Fahrzeuge etc.) aufgeführt (als Stoffflüsse im Input); diese sind jedoch nicht auf die funktionelle Einheit bezogen, sondern werden als absolute Werte angegeben; sie werden nur als Input und nicht als Output (Entsorgung der Betriebsmittel) angegeben. Die durch die Herstellung dieser Produktionsmittel verursachten Umweltaspekte sind dagegen über Leistung, jährliche Auslastung und Lebensdauer auf die funktionelle Einheit bezogen Weiterführende Hinweise und Literatur: #1: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.2, Handbuch, Darmstadt, August 2004. #2: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.1, Handbuch, Darmstadt, Darmstadt, Januar 2003. #3: Fritsche, U., et al.: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Verbundprojekt gefördert vom BMU im Rahmen des ZIP, Projektträger: FZ Jülich, Mai 2004, Anhangband zum Endbericht. #4: Fritsche, U., et al.: Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell integrierter Systeme (GEMIS) Version 2.1 - erweiterter und aktualisierter Endbericht, U. Fritsche u.a., i.A. des Hessischen Ministeriums für Umwelt, Energie und Bundesangelegenheiten (HMUEB), veröffentlicht durch HMUEB, Wiesbaden 1995
Copyright Yes
Owner of data set
Data set LCA report, background info
Quantitative reference
Reference flow(s)
  • - 1.0 * 1.0 kg (Mass)
Functional Unit 1 kg Eisen
Technological representativeness
Technology description including background system Im Hochofen wird das Eisenerz aus Sinter, Pellets oder Stückerz mit Koks zu Eisen reduziert und dabei geschmolzen. Die mineralischen Begleiter aus Eisenerz und Koks bilden zusammen mit den Zuschlägen die Schlacke. Zusätzliche Prozeßwärme wird durch partielle Oxidation des Kokses mit erhitzter Luft (Wind) erzeugt, der dem Hochofen im unteren Teil zugeführt wird. Ein Teil des Kokses kann dabei durch andere Energieträger wie Kohle oder Schweröl ersetzt werden. Alle Daten sind auf Deutschland bezogen. Allokation: Der Hochofen „produziert" Gichtgas aus der partiellen Oxidation der fossilen Energieträger. Das gereinigte Gichtgas wird zu einem Drittel verbraucht, um den Wind vorzuwärmen. Aus dem restlichen Gichtgas wird Strom produziert. Genese der Daten: Material- und Energiebilanz wurden aus #1 und #2 zusammengestellt und in #3 diskutiert. Es wird angenommen, daß 33% des intern entstandenen Gichtgases von insgesamt 6 GJ/t RE zur Erhitzung des Windes verbrannt wird, die restlichen 66% werden zur Stromerzeugung genutzt. Da auf einen Austausch der Energieträger Kokereigas und Gichtgas verzichtet wird, folgt die Bilanzierung damit weitgehend dem Energieverteilungsplan nach (Ullmann 1989). Aus Ullmann wird ebenfalls der elektrische Wirkungsgrad von 0,374 übernommen. Es werden somit 1,5 GJ/t RE Strom erzeugt. Die Emissionsfaktoren sind aus (UBA 1995) sowie aus eigenen Berechnungen gewonnen worden. Die Tabelle gibt einen Überblick über die Zusammensetzung der Emissionen. Emission prozessbedingte Feuerung Feuerung kg/t RE Winderhitzer Kraftwerk CO2 1419 CO 1,18 0,095 0,38 1,655 CH4 - NMVOC - SO2 0,06 0,0066 0,013 0,08 NOx 0,133 0,76 0,893 Staub 1,0 1 Die Daten für prozessbedingte Emissionen sind aus (UBA 1995) entnommen worden. Die Emissionen werden durch Undichtigkeiten des Gichtgassystems und Emissionen aus der Gießhalle verursacht. Da es sich um keine gefaßten Emissionen handelt, sind die Emissionen vom UBA geschätzt bzw. aus Einzelmessungen hochgerechnet. Für Stickoxide sind keine Emissionsfaktoren erhoben worden, obwohl beim Abstich Stickoxide entstehen können. Emissionsfaktoren zur Feuerung der Gichtgase liegen vom UBA (UBA 1989) vor und wurden für SO2 übernommen. Die Emissionsfaktoren für Stickoxide sind aufgrund der Aufspaltung der Gichtgasnutzung in Winderhitzer und Kraftwerk nicht anwendbar. Zur Berechnung der Stickoxide sind für den Winderhitzer 50 mg Nox/ Nm3 und für das Kraftwerk 200 mg NOx/Nm3 bei 6 Vol-% Restsauerstoff angesetzt worden. Für CO werden 50 mg CO/Nm3 beim Winderhitzer und 100 mg CO/Nm3 beim Kraftwerk berechnet. CO2 ist aus dem Kohlenstoffinput direkt berechnet worden, ohne Abzug des im Roheisen verbleibenden Kohlenstoff. Die Wasserinanspruchnahme von 3,24 m3/t Prozeßwasser wird nach #2 zur Kühlung der Gicht, zur Granulierung der Schlacke und zur Naßwäsche eingesetzt. Zur Kühlung der Außenhaut wird 2 m3/t Kühlwasser nach #2 gebraucht. Als Produktionsabfall entsteht Schlacke (235 kg/t) sowie Gichtgasstaub (5 kg/t) und Gichtgasschlamm (5 kg/t). Gichtgasstaub wird rezykliert und daher nicht bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Sonstige gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98% Produkt: Metalle - Eisen/Stahl Verwendete Allokation: Allokation durch Gutschriften
LCIA Method Data set Mean amount Unit Kommentar
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
1.42
kg CO2-Äq.
7.02E-4
kg SO2-Äq.

Inputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 5.24 kg5.24 kg
Linked process dataset:
Product flow Systems / Other systems 11.5 MJ11.5 MJ
Linked process dataset:
Product flow Systems / Other systems 1.02 kg1.02 kg
Linked process dataset:
Product flow Systems / Other systems 0.9540000000000001 MJ0.9540000000000001 MJ
Linked process dataset:
Product flow Systems / Other systems 0.03 kg0.03 kg
Linked process dataset:
Product flow
Systems / Other systems 11482.0 t*km11482.0 t*km
General comment Probas1: Transport von Öl-schwer-DE-2030 mit Zug-el-Güter-DE-2050 2475tkm, Transport von Steinkohle-DE-Koks mit Zug-el-Güter-DE-2050 9007tkm
Product flow Systems / Other systems 0.465 kg0.465 kg
Linked process dataset:
Product flow Systems / Other systems 0.13 kg0.13 kg
Linked process dataset:
Product flow Systems / Other systems 0.03 kg0.03 kg
Linked process dataset:

Outputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 1.0 kg1.0 kg
Waste flow
End-of-life treatment / Other end-of-life services 0.235 kg0.235 kg
General comment Nicht eindeutig mappbarer Fluß – kontextabhängige Verwendung ist zwingend zu überprüfen:
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 0.001 kg0.001 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 8.0E-5 kg8.0E-5 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 8.93E-4 kg8.93E-4 kg
Elementary flow Emissions / Emissions to water / Emissions to fresh water 6.0E-5 kg6.0E-5 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 1.42 kg1.42 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 0.00165 kg0.00165 kg
Elementary flow Emissions / Emissions to water / Emissions to fresh water 6.0E-9 kg6.0E-9 kg