Close Collapse all sections
Process Data set: Metall\Stahl-Oxygen-DE-2020 (en) de

Key Data Set Information
Location DE
Reference year 2020
Name
Metall\Stahl-Oxygen-DE-2020
Classification
Class name : Hierarchy level
  • NACE 1.1: Metallerzeugung und -bearbeitung / Erzeugung von Roheisen, Stahl und Ferrolegierungen
General comment on data set Kurzinfo: Datensatz aus GEMIS. Negative Werte durch Gutschriftenrechnung. GEMIS steht für “Globales Emissions-Modell Integrierter Systeme“; es ist ein Softwaretool des Öko-Instituts. GEMIS wurde 1987 erstmals angewendet und wird seitdem weiterentwickelt. Die GEMIS-Datensätze beruhen - je nach Anwendung - auf unterschiedlichen Methoden; auch der zeitliche und der örtliche Bezug der Datensätze sind verschieden. Methode bei Prozessen mit mehreren Outputs: Zur Modellierung der Datensätze zu Multi-Output Prozessen wird in GEMIS die Methode der Systemerweiterung verwendet. Hierbei werden Datensätze, in denen jeweils alle Inputs, alle Outputs und alle Umweltaspekte eines Multi-Output Prozesses ausgewiesen sind, als “Brutto“ bezeichnet. Durch Subtraktion von ‚Bonus’-Prozessen, die jeweils einen der Outputs auf herkömmliche Weise bereitstellen, entsteht ein Nettoprozess, in denen das substituierte Nebenprodukt als Gutschrift erscheint. Die Gutschrift ist dabei kein realer Output des Prozesses, sondern ein rechnerischer ‚Merker’. Beispiel: Multi-Output Prozess Biogas-BZ-MC-HKW-D-2020/brutto: Output ist 1 TJ Elektrizität und 0,6 TJ Wärme, der “Netto“-Datensatz soll sich aber nur auf die Elektrizität beziehen. Durch Subtraktion des Bonusprozesses Wärme-Bonus-Gas-Hzg-D-2020 mit dem Output Wärme(0,6 TJ) entsteht der “Netto“-Datensatz Biogas-BZ-MC-HKW-D-2020/Gas, für den als Output 1 TJ Elektrizität und 0,6 TJ ‚Gutschrift Wärme-Bonus-für-KWK (Bio)-2020 bei Wärme-Bonus-Gas-Hzg-D-2020’ angegeben werden; die Gutschrift stellt keinen Stoff- oder Energiefluss des Prozesses dar, sie ist allein rechnerisch begründet. Transport: Angaben zu den angesetzten Transportdistanzen werden nicht gegeben. Abschneidekriterien: Wasser wird in der Regel nur auf der Inputseite angegeben (etwa als Kühlwasser), auch wenn es den Prozess wieder verlässt als Abwasser. Weitere Angaben zu angewendeten Abschneidekriterien werden nicht gegeben. Besondere Nomenklatur: Zahlreiche Abkürzungen für Brennstoffe aus Biomasse und entsprechende Technologien. Besonderheiten auf Datensatzebene: Die Datensätze sind mit Vorketten-Datensätzen verknüpft, in denen die jeweils benötigten Vorprodukte, Energien und Transportleistungen erzeugt werden. Die Daten zu den Umweltaspekten werden erstens “direkt“ (d.h., nur aus dem jeweiligen Prozess, falls dieser direkt zu Umweltaspekten beiträgt) als auch “mit Vorkette“ (d.h., einschließlich aller vorausgehenden Prozesse) ausgewiesen. Negative Werte für Stoffflüsse kommen in GEMIS regelmäßig vor; sie entstehen durch die Anwendung von Systemerweiterung um Multi-Output Prozesse in Single Output Prozesse umzurechnen. Teilweise werden Aufwendungen für Produktionsmittel (Anlagen, Fahrzeuge etc.) aufgeführt (als Stoffflüsse im Input); diese sind jedoch nicht auf die funktionelle Einheit bezogen, sondern werden als absolute Werte angegeben; sie werden nur als Input und nicht als Output (Entsorgung der Betriebsmittel) angegeben. Die durch die Herstellung dieser Produktionsmittel verursachten Umweltaspekte sind dagegen über Leistung, jährliche Auslastung und Lebensdauer auf die funktionelle Einheit bezogen Weiterführende Hinweise und Literatur: #1: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.2, Handbuch, Darmstadt, August 2004. #2: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.1, Handbuch, Darmstadt, Darmstadt, Januar 2003. #3: Fritsche, U., et al.: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Verbundprojekt gefördert vom BMU im Rahmen des ZIP, Projektträger: FZ Jülich, Mai 2004, Anhangband zum Endbericht. #4: Fritsche, U., et al.: Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell integrierter Systeme (GEMIS) Version 2.1 - erweiterter und aktualisierter Endbericht, U. Fritsche u.a., i.A. des Hessischen Ministeriums für Umwelt, Energie und Bundesangelegenheiten (HMUEB), veröffentlicht durch HMUEB, Wiesbaden 1995
Copyright Yes
Owner of data set
Data set LCA report, background info
Quantitative reference
Reference flow(s)
Functional Unit 1 kg Stahl
Technological representativeness
Technology description including background system Oxygen- bzw. Sauerstoff- bzw. Blasstahlwerk: Als Blasstahlverfahren werden das LD- oder das OBM-Verfahren eingesetzt. In beiden wird Roheisen unter Zusatz von Schrott durch Sauerstoff in Stahl umgewandelt. Der Sauerstoff oxidiert die Roheisenbegleiter Kohlenstoff, Schwefel, Phosphor und Mangan unter Wärmeentwicklung. Die festen Oxide werden in die Schlacke eingebunden. Die genannten Verfahren unterscheiden sich durch die Technik der Einbringung von Sauerstoff in das flüssige Eisenbad. Beim LD-Verfahren wird der Sauerstoff von oben aufgeblasen, beim OBM-Verfahren wird der Sauerstoff über den Boden eingedüst. Alle Daten beziehen sich auf Deutschland. Allokation: keine Genese der Daten: Aus veröffentlichen ökobilanziellen Studien konnten folgende Daten zur Materialbilanz zusammengetragen werden Tabelle01 Materialbilanz Aufblasstahl verschiedene Studien. Klöckner 1980 KFA 1989 WIKUE 1993 BUWAL 1990 GEMIS Input Roheisen 820 1080 961 863 934 Schrott 280 60 172 162 180 Kalk 60 90 50 81 50 Sauerstoff 70 74 81 k.A. 70 Summe 1230 1303 1264 1106 1234 Output Stahl 1000 1000 1000 1000 1000 Schlacke 115 144 136 97 110 Konvertergas 100 111 97 k.A. 100 Stäube 15 14 31 k.A. 15 Summe 1230 1270 1264 1097 1225 Aus der Aufstellung wird deutlich, daß unterschiedliche Angaben zum Input vorliegen. Besonders relevant ist die eingesetzte Roheisen- und Schrottmenge. Hier zeichnen sich Differenzen ab. In GEMIS ist die Einsatzmenge von Roheisen und Schrott aus #1 ermittelt worden. Dabei erreicht der Schrotteinsatz mit ca. 180 kg/t Stahl nicht die anlagentechnischen Angaben von 200 kg/t Stahl. Die Stoffe aus der Oxidation mit 70 kg Sauerstoff /tP bilden das Konvertergas. Kalk wird nach #1 mit 50 kg/t Stahl eingesetzt. Die Daten entsprechen den Angaben anderer Bilanzen. Es werden keine Energieträger eingesetzt. Der Wärmegewinn resultiert aus der Oxidation der Eisenbegleiter Kohlenstoff, Schwefel, Mangan etc.. Emissionen: Die gasförmigen Emissionen über das Koverterabgas von 0,08 kg NO2 / t Stahl, 0,175 kg Staub / t und 11,5 kg CO /t werden aus #2 übernommen Der Prozesswasserverbrauch beträgt nach #3 rund 2 m3/ t und der Kühlwasserverbrauch 1 m3/t. Die Emissionen an CSB werden nach #3 auf 0,05 kg/t und an AOX auf 0,005 g/t abgeschätzt. Achtung: Die Schwermetall und Dioxin/Furan-Emissionsdaten sind ein Aggregat über die gesamte vorgelagerte Prozesskette, d.h nicht nur die des Oxygenstahlwerks ! (Daten nach ÖKO 2001) Auslastung: 5000h/a Brenn-/Einsatzstoff: Metalle - Eisen/Stahl gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 107% Produkt: Metalle - Eisen/Stahl
LCIA Method Data set Mean amount Unit Kommentar
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
MJ
0.0
kg CO2-Äq.
5.57E-5
kg SO2-Äq.

Inputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 3.0 kg3.0 kg
Linked process dataset:
Product flow Systems / Other systems 0.18 kg0.18 kg
Linked process dataset:
Product flow Systems / Other systems 0.015 kg0.015 kg
Linked process dataset:
Product flow Systems / Other systems 0.07 kg0.07 kg
Linked process dataset:
Product flow Systems / Other systems 0.049999999999999996 MJ0.049999999999999996 MJ
Linked process dataset:
Product flow Systems / Other systems 0.934 kg0.934 kg
Linked process dataset:
Product flow Systems / Other systems 0.05 kg0.05 kg
Linked process dataset:

Outputs

Type of flow Classification Flow Location Mean amount Resulting amount
Product flow Systems / Other systems 1.0 kg1.0 kg
Waste flow
End-of-life treatment / Other end-of-life services 0.11 kg0.11 kg
General comment Nicht eindeutig mappbarer Fluß – kontextabhängige Verwendung ist zwingend zu überprüfen:
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 1.75E-4 kg1.75E-4 kg
Elementary flow
4.2E-12 kg4.2E-12 kg
General comment Nicht eindeutig mappbarer Fluß – kontextabhängige Verwendung ist zwingend zu überprüfen:
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 2.88E-6 kg2.88E-6 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 8.0E-5 kg8.0E-5 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 3.4E-7 kg3.4E-7 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 5.3E-8 kg5.3E-8 kg
Elementary flow Emissions / Emissions to water / Emissions to fresh water 5.0E-5 kg5.0E-5 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 4.1E-7 kg4.1E-7 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 0.0115 kg0.0115 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 5.4E-8 kg5.4E-8 kg
Elementary flow Emissions / Emissions to air / Emissions to air, unspecified 7.9E-8 kg7.9E-8 kg
Elementary flow Emissions / Emissions to water / Emissions to fresh water 5.0E-9 kg5.0E-9 kg